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INTRODUCTION 

We present here the abstracts of the talks presented at the conference 
"Mathematical Problems from the Physics of Fluids." Each invited speaker 
was requested to provide a short abstract of his talk together with a com- 
mented bibliography containing the papers of the last decades judged (by 
the speaker) as particularly relevant for his work and/or his talk. 

Unfortunately, as the reader can check, not all the speakers inter- 
preted our request in the sense we wanted: nevertheless we think that all 
the contributions are interesting and important even when they are a little 
too sketchy. Their collection will hopefully be useful to those who would 
have liked to attend the conference but could not come. 

The aim of the conference was to bring together scientists actively 
working on the problems of turbulence and of related chaotic phenomena, 
the idea being to provide an updated review of the research performed 
theoretically, numerically, and experimentally on the above subjects. 

In recent years we have witnessed the exciting experience of new 
theories and viewpoints developing simultaneously and with various 
mutual influences in the mathematical theory of dynamical systems, in the 
theory of fluids and in actual experiments on fluids. This conference tried to 
reproduce for a short time the atmosphere which characterized the last 
decade of research on fluids: the results have been quite interesting. We are 
quite confident that the mutual collaboration and interaction between 
people with very diverse cultural backgrounds (e.g., mathematicians and 
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experimental physicists) will continue despite some of the talks hinting that 
this happy period might have reached an end. 

The latter pessimistic view arises from the feeling among some par- 
ticipants that on one hand we have basically understood the onset of tur- 
bulence to an extent that it might seem pointless to pursue further 
experiments to check agreement between theory and experiment and on the 
other hand that theorists seem unable to get a simple clue to the inter- 
pretation of the more developed turbulence and its intricate space-time pat- 
terns. Thus, while the experiental techniques are so advanced as to allow 
the performance of very elaborate experiments, the theorists, unable to 
build a really solid theory of the statistical properties of turbulent flows, 
seem to indulge in trying to understand better the onset of turbulence. 

Of course one has to agree that we are not close to understanding the 
structure of the strange attractors that govern turbulent phenomena as we 
hoped to be a few years ago. The dream of building up a conceptual theory 
of the statistical properties of a steady turbulent flow as simple as statistical 
mechanics for conservative systems, without having to really understand 
the mathematically intractable fluid equations, appears for the time being 
quite remote, although some of the conference speakers have reported 
encouraging results and fresh new ideas on the subject. 

Nevertheless, it seems to me that for a few more years the close 
interaction between theorists and experientalists has a good chance of con- 
tinuing and of being fruitful. It appeared from several talks that theorists 
have still as their main objective understanding more deeply the properties 
of developed turbulence, and one should consider their preference for the 
onset phenomena as a preparation for more challenging problems. Much 
has in fact still to be understood in the low-degree-of-freedom systems that 
will continue to be relevant for the future theory of the statistical properties 
of strange attractors. Most of the talks were devoted to such technical 
problems as one would expect, since scientific progress can be only 
achieved "provando e riprovando" while waiting for the rare qualitative 
jumps in the understanding. 

We are grateful to Accademia dei Linci for proposing the organization 
of the conference and providing the first cultural and financial support: 
Professor Luigi Radicati and the Centro Interdisciplinare Lineeo have 
worked with particular interest for the birth of this meeting. 

Then we thank IUPAP, IBM-ITAMIA, and the Mathematics 
Department of the II University of Rome for their prompt financial sup- 
port. Finally, we are indebted to GNEM-CNR, to Comitato per la 
Matematica, and to the II University of Roma for further substantial finan- 
cial help. 

G. Gallavotti 
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Vortex methods are used for the numerical simulation of time-dependent, 
incompressible flow without viscosity or at high Reynolds number. The 
principle is to solve a system of ordinary differential equations for the paths 
of representative particles in the fluid. This talk will survey the current state 
of theoretical work on these methods, emphasizing the formulation and 
error analysis for inviscid flow without boundaries. In this case the method 
can be designed so that the approximate solution converges with high- 
order accuracy for smooth flows in two or three space dimensions. A few 
test calculations will be described. 

When boundaries are present, the effect of viscosity must be incor- 
porated. A general method developed by Chorin (7) and Chorin and 
Marsden (8) uses elements of vorticity of two kinds which are advected 
according to a velocity computed from their current configuration. The 
interior flow is represented by a collection of vortices of finite core, or 
"blobs," while vortex sheets are generated near the boundary to satisfy the 
no-slip condition. A random walk of all the elements simulates the effect of 
viscosity. For  a general descrition of this full method, see Ref. 8. For  a sur- 
vey of methods and applications, see Refs. 16 and 17. A concise summary 
of the formulation and theory for the inviscid case without boundary is 
given in Ref. 5. Related methods of "particle-in-cell" type have been in use 
for a long time in plasma physics as well as fluid mechanics; see Refi 15. 

Vortex methods are based on the fact that, for incompressible flow, the 
velocity field is the convolution of an integral kernel K wih the vorticity 
function co. In two dimensions vorticity is conserved on particle paths. For  
this reason we can supose that a particle currently located at xi(t ) carries a 
vorticity o)j assigned at time zero. The vorticity is approximated at the 
current time by 

Y~ ~o~(x- xj) o~jh 2 
J 

where h is the initial particle spacing and q~ is a smooth approximation to 
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the 6 function, scaled by another length parameter 6. This prescribed form 
of the vorticity leads to a system of ordinary differential equations 

d x  i 
dt = ~ K a ( x i -  xj) cojh 2 

J 

where K~ = K .  qg~. The velocity at arbitrary locations can be found in a 
similar way. 

Methods of this type can be shown to converge with accuracy in good 
norms under suitable smoothness assumptions and with proper choices of 
parameters. The first results of this type were given by Hald and 
Del Prete ~ for two-dimensional flow. Beale and Majada proved con- 
vergence for one natural method in three dimensions and showed that the 
methods could be high-order accurate3 2'3) In three dimensions the vorticity 
must be updated as well as the locations of the elements. 

A number of further improvements have been made in the theory. Cot- 
tet and Raviart (9'm'2~ gave a much better treatment of consistency than the 
earlier ones. Cottet has also shown convergence of one version of the 
"cloud-in-cell" method. Anderson and Greengard (1) extended the con- 
vergence theory to include some methods of time discretization, and Hald 
has treated more general ones. Hald ~4) has also shown convergence in two 
dimensions when the vorticity is only Holder continuous. Anderson and 
Greengard (t) discussed a second three-dimensional vortex method, and its 
convergence was shown in Ref. 6 and by a different method in Ref. 21. This 
latter method is less explicitly Lagrangian than that of Ref. 2. Greengard 
has shown convergence of another 3D method, closer to that of Ref. 2, in 
which the elements are introduced along vortex lines; he has used this ver- 
sion to simulate the interaction of two vortex rings Ref. 11. 

In a different vein, Marchioro and Pulvirenti ~8'~9) have shown weak 
convergence of the random vortex method as an approximation to the 
equations of viscous flow. Recently, Goodman (22) has derived a stronger 
result of this type. In this case the particles satisfy a system of stochastic 
ordinary differential equations. 

A simple class of test problem in two dimensions illustrates the 
strengths and weaknesses of these methods. The vorticity is chosen to be 
radial and varying so that there is shearing of the outside with respect to 
the inside. The predicted orders of accuracy are observed for moderate 
times. After a longer time, the accuracy deteriorates, but does not continue 
to get worse (Ref. 5). The distortion of the original configuration seems to 
be the largest source of error. There are a number of possible ways for 
improvement. One particularly simple way was discussed that is much 
more accurate and involves only a moderate increase in computation. 
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There  is by  n o w  a g o o d  u n d e r s t a n d i n g  of  a r a the r  genera l  class of  one-  
d i m e n s i o n a l  d y n a m i c a l  sys tems ( i t e ra t ion  of  m a p s  of  a n  in terva l ) .  O n e  can  
d i s t ingu i sh  be tween  the  case of e x p a n d i n g  m a p p i n g s  ( m o d u l u s  of the s lope 
everywhere  la rger  t h a n  one )  which  are very  s imi la r  to u n i f o r m l y  hype rbo l i c  
systems,  a n d  the case of  S u n i m o d a l  m a p p i n g s  (which  r o u g h l y  speak ing  
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look like parabolas) corresponding to nonuniformly hyperbolic systems. 
We mainly review the properties of this class of transformations whose 
prototype is the logistic map x ~ 1 - /~x  2, 0 ~ # ~< 2. 

The topological approach is concerned with the nature of the attrac- 
tors (periodic orbit, cantor set, intervals), while the ergodic approach 
investigates the statistical properties of trajectories. The most interesting 
questions are of course related to the so-called chaotic behavior. The first 
problem is the abundance of this chaos: In a one-parameter family of maps, 
how frequently do we meet chaotic behavior? The second problem con- 
cerns the statistical description of this chaos. Which invariant measure 
should we use? A satisfactory proposal was made some years ago by 
Bowen and Ruelle, and reemphasized recently by Milnor in connection 
with the topological approach. When the correct invariant measure is selec- 
ted, what are the ergodic properties? Under some additional technical con- 
ditions we can now answer all these questions. Although many interesting 
problems remain open, the above picture should be a guideline for the 
analysis of higher- (but finite) dimensional dissipative systems. 

We only quote a few recent articles and books. For the topological 
analysis of maps of an interval one can consult Refs. 13, 6, and 3. For more 
general systems, see Ref. 7. The statistical analysis is somewhat scattered in 
the literature. A review of the expanding case appeared in Ref. 4. The abun- 
dance question is treated in Refs. 8, 1, and 5. Invariant masures are dis- 
cussed in Refs. 18, 6, 15, 11, 2, and 10. For recent results about higher- 
dimensional systems, consult Refs. 19, 7, 12, 17, 20, and 9. For infinite- 
dimensional systems, see Ruelle's contribution to this meeting. 
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We discuss several aspects of a general program dealing with the structure 
of oscillations in solutions to nonlinear systems of partial differential 
equations. The topics deal with the analysis of solutions to quasilinear 
hyperbolic and elliptic systems of conservation laws arising in the theory of 
compressible fluid dynamics and hyperelasticity and in solutions to 
semilinear hyperbolic systems arising as discrete-velocity models in the 
kinetic theory of gases. The tools include the representing measure of L. C. 
Young and the Tartar-Marat theory of compensated compactness. We dis- 
cuss various applications of the general theory dealing, for example, with 
convergnce of the viscosity method and convergence of classical finite dif- 
ference schemes for hyperbolic systems of conservation laws in one space 
dimension. 

We also discuss the notion of measure-valued solution to conservative 
systems of differential equations. The notion is relevant to the problem of 
analyzing various singular limits including the zero diffusion limit and zero 
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dispersion limit for systems of conservation laws. The prototypical models 
are provided by the singular transitions associated with Burger's equation 
and the KdV equation. 
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Nowadays, there is no longer any doubt about the existence of deter- 
ministic chaos; however, some questions remain, in particular, that one of 
the best ways of characterizing this chaos is from experimental data, 
together with the knowledge of the underlying physical mechanisms. From 
some examples, obtained from Rayleigh-B6nard convection in confined 
geometry, we try to address these questions in the case of the appearance of 
chaos from a biperiodic regime (from which it is known that different 
routes are possible). 

The dynamics of two-coupled thermal oscillators near a phase locking 
(frequency ratio p _~ ~ and �89 has been followed through the study of trajec- 
tories in the phase space. Phase intermittencies are well-evidenced, i.e., 
periods of nearly locked states, interrupted by fast rotations of the phase 
between the two oscillators. The time length of these periods may be con- 
stant (then no chaos is present) or stochastic, and then chaos appears. 
Phase intermittencies are also found in forced convection experiments 
where an artificial oscillator is induced and tuned near an intrinsic thermal 
oscillator. This phase dynamics is compared to properties of the numerical 
Curry-Yorke model (a mapping in R2); the similarity between the 
experimental observations and the model is striking. 

When the frequency ratio of the convective state departs from that of a 
locking state, a rich Fourier spectrum is measured near the onset of chaos. 
It may be understood in terms of continued fraction representation of the 
actual rotation number. In a very narrow range of Rayleigh number, 
Fourier spectra, Poincar6 sections, and fractal dimension of the 
corresponding strange attractors have shown a drastic change of the 
dynamical behavior with the rotation number; the strong influence of the 
dynamical behavior with rotation number in the appearance of chaos is 
then clearly evidenced. 
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The existence problem for solutions of Feigenbaum's equation has been 
considered in Refs. 1 (the first detailed description of what is involved) 
2, and 3, an analytic study which can be viewed as a precursor of the 
present work, and Ref. 4, where computer methods have been used for the 
first time. 

The question of the limit as n ~ De of Feigenbaum's equation 

1 
j = co(x) = f.(x") 

has been considered in Refs. 5-8. 
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The ma in  ingredient  of  our  analysis  is an expans ion  f n ( x ) ~  1 - h ( z ) / n ,  
leading to a f ixed-poin t  equa t ion  of  the form 

h E r ( x ) ]  - h ( x )  = J ( x )  

where F ( 0 ) =  0, U ( 0 ) =  1. 
This  is the in teres t ing case of a Renormalization Group transformation 

with marginal eigenvalue and nontrivial f i x e d  point. W e  get a lot  of infor- 
m a t i o n  from Ecalle 's  work,  (9'1~ which we combine  with Loeffel 's work  on 
Borel  summabi l i ty .  ~ O u r  me thods  for compute r -ass i s t ed  proofs  have 
been d o c u m e n t e d  earlier(13); see also Ref. 14 for a general  d iscuss ion of 
in terval  ar i thmetic .  

The  above  work  is summar ized  in the j o in t  pub l i ca t ion  with 
P. Wit twer .  (15) 
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In the past few years a new approach to the study of equations governing 
the flow of an incompressible fluid has gained ground thanks to the advent 
of modern computers. It is based on the numerical simulation of nonlinear 
systems of ordinary differential equations derived through truncation to a 
finite number of Fourier-components (modes) of suitable expansions of the 
partial differential equations that rule the fluid flow. Here we are concerned 
with the results that were obtained in studying suitable truncations of the 
planar Navier-Stokes equations with periodic boundary conditions. In 
particular, we briefly review some results which, in the framework of 
dynamical systems, seem to have given some contribution to the 
understanding of the onset of chaos. 

The first significant result is found in a 5-mode truncation (1) and is 
associated to the discovery of sequences of presumably infinitely many 
period-doubling bifurcations of a periodic orbit. The process, which leads 
to the appearance of a strange attractor, is found to be compatible with the 
Feigenbaum theory of universality. 

The phenomenon of period-doubling of a 2-torus is discovered in a 7- 
mode model. (2'3) Contrarily to what usually occurs in the case of a periodic 
orbit, the sequence of doublings stops after a finite number of steps. In the 
case we consider, a third bifurcation of a different kind generates an attrac- 
tor which, shortly after, has a dimension larger than 3. 

A detailed description of two "breakings" of a 2-torus is obtained from 
a 12-mode model. (4) The analysis of the intersection curve of the torus with 
a Poincar6 section and the analysis of a return map associated with it, 
shows that the breaking is due to the appearance onto the curve of 
foldings, presumably in an infinite number, which make the structure of the 
attractor become quite complicated. The process is accompanied by 
frequency locking, which makes the definition of the transition point quite 
difficult. 
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In Ref. 4 some phenomena of "crisis" of a strange attractor are also 
described. Two of them are associated with the disappearance of the attrac- 
tor arisen in consequence of the breaking of a torus. The crises, which are 
due to the collision with neighboring unstable periodic orbits, also in this 
case are evidenced by making use of a Poincar6 section. In addition, one 
case is shown in which the crisis seems to involve a torus without being 
preceded by a breaking. 

The asymptotic behavior of a sequence of resonances on a torus is 
investigated in Ref. 5. Correspondingly to different models (two 4-mode 
truncations and a 6-mode one) three sequences of lockings n / (pn  + 1) show 
three distinct behaviors when, as n tends to infinity, they approach the final 
locking l ip.  The behavior in fact goes as 1/n, 1//7 2, and c n (c~0.7) ,  respec- 
tively. 

Finally, we make a remark which comes from the phenomenologies 
described in Refs. 3 and 4. There can exist strange attractors on which the 
motion is the result of two components:  a periodic component,  which is 
due to two independent frequencies, and a chaotic one, which takes place 
on a small scale. In such a case, phase locking is very likely to occur and, 
furthermore, it may be quite difficult to detect chaos by the usual tools like 
spectral analysis. So, it may be practically impossible, particularly in 
experiments, to distinguish between quasiperiodic and such chaotic 
motions. 
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In this talk the results of a joint work with Benettin ~1~ are presented. 
I consider a classical Hamiltonian system with l degrees of freedom. 

The Hamiltonian is supposed e close to an integrable one. 
The discussion will point out that the preceding work of 

Nekhorossev ~2) not only sets up a bound on the time scale on which 
Arnold's diffusion can take place but also allows us to describe quite 
precisely many  qualitative features of the motion up to a time scale T~(e) 
depending on the perturbation strength ~ so that 

etkT~(~) ~-~o' ~ '  foral l  k~>0 
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We define, following Nekhorossev, and then analyze the notion of 
"resonance of order r," r = 0, 1, 2,..., l, as a set of data in phase space. We 
also analyze the behavior of the "slow" and "fast" variables associated with 
a resonance. 

A precise meaning is given to the statement that within the time range 
e-~/2< t <  T~(e) the only nontrivial evolution is that of slow variables. 
Such evolution, when the initial data are reasonable, i.e., at least "double" 
(i.e., r/> 2), can be described by a rather general Hamiltonian system with 
N degrees of freedom and generically not close to an integrable one. 
Chaotic phenomena are therefore possible after a time scale ~ e-2/2, and 
are controllable by perturbation theory. 

If N =  0, 1, the time evolution stays very close to an integrable one up 
to the time scale To~(e), and chaotic phenomena can show up only on 
larger time scales. 

We recover all the results of Nekhorossev (in particular that Arnold's 
diffusion cannot start before the time scale T~(e)) with explicit values for 
all the constants under the simplifying assumption that the unperturbed 
Hamiltonian is either strictly convex or is linear nonresonant. 

1. G. C. Benettin and G. Gallavotti, Stability of Motion Near Resonances in Quasi Integrable 
Hamiltonian Systems, preprint, 1985, Padova. 

2. V. Nekhorossev, Russ. Math. Surv. 32:6 (1977), pp. 1-65. 

Bibliographical Guide 

The basic paper in modern perturbation theory for Hamiltonian 
systems is the paper of Kolmogorov(~): in this work a rather general sketch 
of the proof of the first theorem of a series which is loosely called "KAM 
theory" is provided. 

It seems that not all scientists agree on the completeness of such a 
proof: to help the reader understand the sketch of the proof by 
Kolmogorov, I suggest the paper by Benettin, Galgani, and Giorgilli (2) 
where the details are filled in. 

The proof suggested by Kolmogorov is rather different from that 
given, for the same theorem, by Arnold (3) or Moser. ~4) 

Arnold's and Moser's new proofs are very interesting because they are 
based on a recursive method very close to what is today called a "tenor- 
realization group method." They were very important for the rather non- 
trivial extensions of the Kolmogorov theorem which led Arnold (5) to prove 
the possibility of a stable planetary system and Moser to prove the theorem 
under the sole assumption of high enough differentiability of the 
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Hamiltonian (as opposed to the analyticity assumed by Kolmogorov and 
Arnold). 

A rather complete analysis of Arnold's method can be found also in 
Refs. 6 and 7 while a more precise connection with the renormalization 
group is worked out in Refs. 8 and 9. 

It has been claimed that the KAM theory is useless from the point of 
view of the applications. I rather think that it has been too little 
understood by scientists interested in true applications. However, recently 
(i.e., starting in the late 1970s), many physicists have produced 
approximation schemes which, although usually nonrigorous from a 
mathematical point of view, follow rather closely the "KAM theory" and 
obtain bounds meaningful for the applications. I quote as examples 
Escande and Doveil, (1~ McKay, ~176 Siggia, (12) and Shender and 
Kadanoff. (13) Such works seem to indicate that the reasons why KAM 
theory has not been applied so far are of a technical nature and perhaps 
may be overcome. 

Recently, a few workers have revisited the KAM theory with the pur- 
pose of obtaining better bounds both in the dependence on the number of 
degrees of freedom, see Wayne, (14) and on the actual value of the pertur- 
bation parameter e when an invariant torus of given rotation number 
ceases to exist, see Porzio, (15) Liverani, Serviri, and Turchetti, ~ obtaining 
results which at least in the latter case are not too far from the best results 
obtained by other methods (i.e. by methods not based on proofs of the 
KAM theorem), see Aubry, ~ and Mather. ~ 

In general, however, there still seems to be little contact between the 
mathematically rigorous works based on KAM theory and the ideas con- 
nected with the theoretical physics works mentioned above. I think that 
further research on this subject (namely on taking seriously the KAM 
theory as a source of useful bounds) should be done, in particular devoting 
attention to celestial mechanics problems where the rigorous bounds are 
particularly poor. 

The theorem of Nekhorossev, ~ which has been the main subject of 
the talk, is a remarkable and not too well-known result complementary to 
the KAM theory, being the first clear quantitative formulation of the range 
of validity of perturbation theory as an asymptotic expansion in e. 

Our results (2~ on the slow and fast variables are implicit in the 
Nekhorossev paper: technically we reverse the order of the proofs by 
treating first the harmonic oscillator case and then the general 
anisochronous systems. In neither case do we use the recursive technique of 
Nekhorossev. Our bounds are probably better than those of the 
Nekhorossev (not always very explicit and hence hard to use for the pur- 
pose of comparison). The l dependence in the case of anisochronous 
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systems is the same found in Ref. 21, where the Nekhorossev theorem is 
proved with explicit evaluation of the constants along the lines of 
Nekhorossev work (i.e., using an iterative scheme). 

The possibility of controlling the system up to an "infinite time scale" 
T~(e) by perturbation theory might be useful in studying the effects of 
various models of dissipative forces on Hamiltonian systems and the 
related "phase lockings": in  particular, one can examine friction models to 
see if the apparent abundance of systems observed in phase locking (i.e., 
very close to a resonance) can be explained by some principle of "minimum 
friction," as many have thought for some time. In this respect, see also the 
lecture by Ghil in this conference and the thesis by WolanskyJ 22) 

The possibility of extending the work presented in this talk to celestial 
mechanical cases has been discussed in the case of a restricted three-body 
problem by Celletti~23): It would be interesting to extend this result to the 
full three-body problem. 

Among the other basic open problems is that of finding techniques 
that enable us to deal with global "nonperturbative" phenomena like the 
Arnold diffusion: such a diffusion may just be outside the range of obser- 
vability for small e, it becomes importan(24) when e is large and the various 
time scales are no longer distinguishable. Of course, one thinks that the 
basic mechanism for Arnold's diffusion is the "wiskered tori, ''(25'26) It is not 
clear, however, how a given system really contains such objects in the 
phase space. 
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Climate dynamics is a new and raidly developing geophysical discipline. Selected problems 
from this discipline are presented, starting with their physical motivation. Mathematical 
aspects emphasize nonlinear oscillations, entrainment and detrainment by periodic and quasi- 
periodic forcing, and the consequences of a complex frequency spectrum for predictability. 

1. I N T R O D U C T I O N  

Cl ima te  d y n a m i c s  is a re la t ive ly  n ew  m e m b e r  of the  fami ly  of  geophys ica l  
sciences. Desc r ip t ive  c l i m a t o l o g y  goes back ,  of  course ,  a t  least  to the  
anc i en t  Greeks ,  w h o  real ized the  i m p o r t a n c e  of the  Sun ' s  m e a n  zen i th  
angle  in  d e t e r m i n i n g  the c l imate  of a g iven  l a t i t ude  belt ,  as well  as tha t  of  
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land-sea distribution in determining the regional, zonally asymmetric 
characteristics of climate. The general human perception of climate change 
is also preserved in numerous written records throughout history, starting 
with the floods described in the epic of Gilgamesh and in the Bible. 

Only recently did the possibility of global climate monitoring present 
itself to the geophysical community, through ground-based observational 
networks and space-borne instrumentation. This increase in quantitative, 
detailed knowledge of the Earth's current climate was accompanied by the 
development of elaborate geochemical and micropaleontological methods 
for sounding the planet's climatic past. 

Observational information about present, spatial detail and about 
past, temporal detail were accompanied in the 1960s by an increase of com- 
puting power used in the processing of climatic data, as well as in the 
modeling and simulation of the seasonally varying general circulation of 
the atmosphere and ocean. The knowledge thus accumulated led to an 
increase of insight which was distilled in simple models, in an attempt to 
analyze the basic ingredients of climatic mechanisms and processes. 

In the following lecture, we describe a few simple models and try to 
convey the flavor of the new, theoretical climate dynamics. As in every area 
of the exact sciences, the fundamental ideas suggested by simple models 
have to be tested by further observations and detailed simulations of the 
phenomena under study. We hope that this description of preliminary, 
theoretical results will stimulate the comparisons and verifications required 
to further develop the theory. 

Theoretical climate dynamics as presented in this lecture are covered 
in Ref. 11 (Part IV, Chaps. 10-12), hereafter GC, and in Part V of Ref. 12. 
Specific references in the text are made to sections and figures in GC. 

2. R A D I A T I O N  B A L A N C E  A N D  E Q U I L I B R I U M  M O D E L S  

The major characteristics of a physicochemical system, such as the 
climatic system, are given by its energy budget. The climatic system's 
energy budget is dominated by the short-wave radiation Ri coming in from 
the Sun, and the long-range radiation R o escaping back into space. The 
approximate balance between R i and Ro determines the mean temperature 
of the system. The distribution of radiative energy within the system, in 
height, latitude, and longitude, determines to a large extent the distribution 
of climatic variables, such as temperature, throughout the system. 

We consider in this section a spatially zero-dimensional (0-D) model 
of radiation balance, with mean global temperature as the only variable. 
The dependence of the solar radiation's reflection on temperature, the 
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so-called ice-albedo feedback, and the dependence of infrared absorption 
on temperature, the greenhouse effect, are discussed. Stationary solutions of 
this model and their linear and nonlinear stability are investigated (Refs. 4, 
8, 16, 23, 29, and 30). 

3. G L A C I A T I O N  CYCLES: P H E N O M E N O L O G Y  A N D  
S L O W  PROCESSES 

The previous section dealt with the climatic system's radiation 
balance, which led to the formulation of equilibrium models. Slow changes 
of these equilibria due to external forcing, internal fluctuations about an 
equilibrium, and transitions from one possible equilibrium to another have 
also been studied (Refs. 1, 22, and GC, Chap. 10). 

Climatic records exist on various time scales, from instrumental 
records on the time scale of months to hundreds of years, through 
historical documents and archeologic evidence, to geological proxy records 
on the time scale of thousands to millions of years. These records indicate 
that climate varies on all time scales in an irregular fashion. It is difficult to 
imagine that a model's stable equilibrium, whether slowly shifting or ran- 
domly perturbed, can explain all this variability. 

A summary of climatic variability on all time scales appears in Ref. 19. 
The most striking feature is the presence of sharp peaks superimposed on a 
continuous background. The relative power in the peaks is poorly known; 
it depends of course on the climatic variable whose power spectrum is plot- 
ted, which is left undefined in GC, Fig. 11.1. Furthermore, phenomena of 
small spatial extent will contribute mostly to the high-frequency end of the 
spectrum, while large spatial scales play an increasing role toward the low- 
frequency end. 

Many phenomena are believed to contribute to changes in climate. 
Anomalies in atmospheric flow patterns affect climate on the time scale of 
months and seasons. On the time scale of tens of millions of years, plate 
tectonics and continental drift play an important role. Variations in the 
chemical composition of the atmosphere and oceans are essential on the 
time scale of billions of years, and significant on time scales as short as 
decades. 

The appropriate definition of the climatic system itself depends on the 
phenomena one is interested in, which determines the components of the 
system active on the corresponding time scale. No single model could 
encompass all temporal and spatial scales, include all the components, 
mechanisms, and processes, and thus explain all the climatic phenomena at 
once. 
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Our goal in this lecture is much more limited. We concentrate on the 
most striking phenomena to occur during the last two million years of the 
Earth's climatic history, the Quaternary period, namely on glaciation 
cycles. The time scale of these phenomena ranges from thousands to 
millions of years. We attempt to describe and model in the simplest way 
possible the components of the climatic system active on these time scales 
--atmosphere, ocean, continental ice sheets, the Earth's upper strata--and 
their nonlinear interactions. 

We sketch the discovery of geological evidence for past glaciations, 
review geochemical methods for the study of deep-sea cores, and describe 
the phenomenology of glaciation cycles as deduced from these cores 
(Ref. 7, GC, Chap. 11, Ref. 17). A near-periodicity of roughly 100,000 
years dominates continuous records of isotope proxy data for ice volume, 
with smaller spectral peaks near 40,000 and 20,000 years, as suggested in 
GC, Fig. 11.1. The records themselves are rather irregular and much of the 
spectral power resides in a continuous background (GC, Sec. 11.1; 
Ref. 15). 

Next, we give a brief introduction to the dynamics of valley glaciers 
and large ice masses. The rheology of ice is reviewed (Glen, 1955) and used 
in deriving the approximate geometry of ice sheets. The slow evolution due 
to small changes in mass balance of an ice sheet with constant profile is 
modeled next. (3"24'25) A simplified, but temperature-dependent formulation 
of the hydrologic cycle and of its effect on the ice mass balance is given. We 
study multiple equilibria of the ice-sheet model thus formulated and their 
stability pointing out similarities with the study of energy-balance models 
in Section 2. A hysteresis phenomenon occurs in the transition from one 
equilibrium solution to another as temperature changes (Ref. 9, GC, 
Sect. 11.2). 

Finally, we study the deformation of the earth's upper strata under the 
changing load of ice sheets. The rheology of lithosphere and mantle is 
reviewed. Postglacial uplift data and their implications for this rheology are 
outlined. A simple model of creep flow in the mantle is used to derive an 
equation for maximum bedrock deflection under an ice sheet and for the 
way this deflection affects the mass balance of the sheet (GC, Sect. 11.3, 
Ref. 26, Ref. 31). 

The equations derived and analyzed in this section for ice flow and 
bedrock response will lead, when combined with an equation for radiation 
balance from the previous section, to a system of differential equations 
which govern stable, self-sustained, periodic oscillations. Changes in the 
orbital parameters of the earth on the Quaternaly time scales provide small 
changes in insolation (Ref. 2, GC, Sect. 12.3). These quasiperiodic changes 
in the system's forcing will produce forced oscillations of a quasiperiodic or 
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aperiodic character, to be studied in the next section. The power spectra of 
these oscillations show the above-mentioned peaks with periodicities near 
100,000, 40,000, and 20,000 years, as well as the continuous background 
apparent in the data. 

4. C L I M A T I C  O S C I L L A T I O N S  

In Section 3 we reviewed some of the geological evidence for glaciation 
cycles during the Quaternary period. Large changes in global ice volume 
and changes of a few degrees in global mean temperature have occurred 
repeatedly over the last two million years. It is these changes we would like 
to investigate in the present section, with the help of very simple models. 

These simple models do not represent the definitive formulation of a 
theory for climatic variability on the time scales of interest. They are used 
merely to illustrate some ideas we believe to be basic for an understanding 
of this variability, an understanding which is still in the early stages of 
development. Other models and related ideas can be found in the references 
of Section 5. 

We formulate and analyze a coupled model of two ordinary differen- 
tial equations for global temperature and global ice volume. The equations 
govern radiation balance (Sect. 2) and ice-sheet flow (Sect. 3), respectively. 
This model exhibits self-sustained oscillations with an amplitude com- 
parable to that indicated by the records and a period of 0(10 ka), where 
1 ka = 1000 years. Phase relations between temperature and ice volume and 
their role in the osciUation's physical mechanism, are investigated (Ref. 10 
and GC, Sect. 12.1). Stochastic perturbations of such self-sustained climatic 
oscillations have also been considered. (22'28) 

Exchange of stability between equilibria (Sect. 2) and limit cycles 
(Sect. 3) in models with an arbitrary number of dependent variables and 
spatial dimensions is studied next. The distinction is made between a stable 
limit cycle which grows slowly in amplitude from zero as a parameter is 
changed (direct or supercritical Hopf bifurcation) and sudden jumps from 
zero to finite amplitude (reverse of subcritical Hopf bifurcation). Structural 
stability and the special role of limiting, structurally unstable, homoclinic, 
and heteroclinic orbits is discussed (GC, Sect. 12.2). 

We introduce the geometry and kinematics of orbital changes in the 
earth's motion around the sun from the perspective of the small insolation 
changes they generate. Eccentricity, obliquity, and precession of the earth's 
orbit are defined. A few fundamental concepts of celestial dynamics and the 
associated mathematical methods are reviewbd (GC, Sect. 12.3). {5,32) We 
report currently accepted results on the periodicities of insolation changes 
during the Quaternary period: 19 and 23 ka for precession, 41 ka for obli- 
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quity, and 100 and 400 ka for eccentricity. Their action on the climatic 
system's radiation balance and hydrologic cycle is modeled. 

Finally we take up the effects of this action upon the climatic oscillator 
above, augmented by a third equation, governing bedrock response to ice 
load (Sect. 3). The free oscillations of this model are found to differ but 
little from those of the previous one. Eccentricity forcing is shown to 
produce a very small or very large response according to whether the 
system operates in an equilibrium or in an oscillatory mode (GC, 
Sect. 12.4). 

We study in detail the internal mechanisms by which forcing at one or 
more frequencies can be transferred through the system to additional fre- 
quencies, as well as to the climatic spectra's continuous background. 
Entrainment results in the system's free frequency becoming locked onto an 
integer or rational multiple of a forcing frequency. Loss of entrainment 
leads to aperiodic changes in system response. 

Combination tones are linear combinations with integer coefficients of 
the forcing frequencies. Prominent among them in the data are those with 
periods near 15, 13, and 10ka, and their harmonics/27~ As a result of 
hydrologic and insolation forcing at the orbital frequencies, the model con- 
sidered here produces spectral lines at many of these observed frequencies, 
superimposed on a continuous background associated with aperiodic, 
irregular terminations of glaciated episodes (Ref. 10 and GC, Sect. 12.5). 

Finally we consider the predictability and reproducibility of climatic 
time series. The consequences of multiple spectral lines and of the con- 
tinuous background for predictability, or the lack thereof, are investigated. 
It is argued that irretrievable loss of predictive skill over a time interval 
0(100 ka) is intrinsic in the aperiodic nature of Quaternary climate changes 
(GC, Sect. 12.6). 

Related ideas for climate dynamics on shorter time scales (months to 
years) are presented in this volume by Legas in GC, Chaps. 5 and 6, 
Ref. 12, Part IV, and Refs. 6 and 18. The use of dynamical systems with 
discrete-valued variables in modeling certain qualitative aspects of climate 
dynamics is summarized also in this volume/2~ 
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Symmetry, Entropy, and Coherence in 
Chains of Oscillators 
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Under very general assumptions, long chains of weakly coupled limit cycle 
oscillators can phase-lock if the frequency difference among the oscillators 
are not too great. The amount  of frequency variation that can exist without 
eliminating locking depends on the symmetry properties of the oscillators; 
in particular, the scaling behavior (as the number  of oscillators increases 
without bound) depends on the symmetry. The analysis uses an unusual 
continuum limit of the discrete equations for the phase differences of the 
oscillators. The proof  that this continuum limit is a correct diagnostic 
equation points up parallels with numerical problems concerning 
algorithms for computing the correct ("entropy") weak solutions to scalar 
quasilinear P.D.E.s. 

The equations examined have the form 

k k = F k ( X k ) + e [ a + ( x k + ~ , X k ) + G - ( X k  ~, Xk)] (A1) 

where X k e R m ;  G +-, F k : R m - + R  m are smooth, e ~ l ,  and k = l  ..... N + I .  
The chain is finite, so 

G - ( X o ,  Xt)=_O, G+(XN+E,  XN+~)=--O (A2) 
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e~ 1 implies that (A1) can be reduced to equations of the form (2) in the 
Bibliography; see Section 2 of the latter. More details about the analysis of 
phase-locked solutions of the above equation are also found in Section 2. 

Different kinds of coupling lead to qualitatively different solutions. In 
particular, for biological applications there is an important distinction 
between "diffusive coupling" [G + (Y, Y) = 0] and synaptic coupling 
EG+-(Y, Y ) g s  0]. Many detailed observations about fish locomotion, 
which is thought to be governed by such a chain of neutral oscillators, 
follow from equations as general as (A1), provided the coupling is synaptic. 

Phase Methods for Coupled Oscillators and 
Related Topics: An Annotated Bibliography 

N. Kopell 
Department of Mathematics, Northeastern University, Massachusetts 

Received April 1, 1986 

Most of the work on oscillators to be commented on here concerns limit 
cycle oscillators, i.e.; dissipative, not Hamiltonian, systems. The dissipation 
is not small; rather, the oscillators have quite stable periodic solutions, but 
the coupling among them is weak. In this limit, much can be said about the 
behavior of the coupled system with almost no hypotheses on the 
oscillators. 

1. P H A S E  M E T H O D S :  T W O  O S C I L L A T O R S  

Weak coupling allows the equations for the full coupled system to be 
replaced by a much lower dimensional system in which each oscillator is 
represented by only its phase. For a forced oscillator, this was done in 1950 
by Levinson. (1) Independent of the differential equations for the forced 
oscillators, the phase space reduces to a two-dimensional torus, with 
equations having the form 

01 = 0.) 1 71- eH(Oo -- 01) + O(e z) 

0o=~o (1) 

Here 01 and 0o are the phases of the forced and forcing oscillators, 
co 1 - ~o o = O(e), e ~ 1, and H is a 2~-periodic function explicitly computable 
from the original equations. Similar equations can be derived for a pair of 
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weakly coupled oscillators, using averaging methods (a) or formal techni- 
ques involving "suppression of secular terms. ''(3'4) 

Using such equations, it is possible to find conditions for 
"phase-locking," i.e., solutions in which both oscillators move at frequen- 
cies that are rationally related, with phase differences that are stably 
periodic in time. (5'6) The limits of phase-locking depend not only on the 
limit cycle, but also on the trajectories of the forced oscillator near the limit 
cycle. (7) When locking fails, there can be drift or "phase walk- 
through."(3,4,8) 

For a forced oscillator or a pair of coupled oscillators, the relevant 
phase space is a two-dimensional torus, and the Poincar6 map (9) is a circle 
map. Phase-locking corresponds to stable periodic points of the Poincar6 
map, so information about the existence of locking can be obtained from 
the theory of circle maps. (lw13) Poincar4 maps do not give all possible 
information about the coupled systems. For example, if two oscillators of 
different frequencies phase-lock, one would like to know at what frequency 
the coupled system runs. In the weakly coupled limit, this frequency can be 
computed and need not lie in the interval between the two natural 
frequencies.(~4) 

Equations of the form (1) (or similar equations for two mutually 
coupled oscillators) fail to describe the full equations if the strength of the 
limit cycle is comparable to the coupling strength (as in strongly forced or 
weakly nonlinear oscillators (~5'16) or if there is a very fast time scale in the 
forcing (17) or in the oscillators themselves (as in relaxation oscillators. (18-21) 
Nevertheless, phase methods can still be used. In some cases, there is still a 
Poincar4 map, but it is no longer invertible (17'22) and displays some of the 
chaotic phenomena associated with one-dimensional maps. (23'24) 

2. LARGER COLLECTIONS OF OSCILLATORS 

Using results from invariant manifold theory, (25) it can be shown that 
if limit cycle oscillators are weakly coupled [O(e)], then the phase space 
has a stable invariant torus whose dimension is the number of oscillators 
(N + 1). (The size of the allowable e is uniform in N if the coupling among 
the oscillators is local, e.g., nearest neighbors, rather than in a mean field 
theory(Z6)). If the oscillators are arranged in a chain, the dynamics of the 
oscillators are uniformly close, and the coupling is nearest-neighbor; then, 
to lowest order in e, there is a set of equations similar to (1) for the N- 
phase differences. (27) These equations have the form 

d ( ~ k / d z = A e + H ( ( ~ k + ~ ) - - H ( ( ~ k ) + H ( - - ( ~ k ) - - H ( - - q ~ k _ , )  (2) 

H(--~bo) = 0 = H((gN+ 1 ) (3) 
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Here eAk = Ok+ I -- (Dk, where ~0k is the frequency of the kth oscillator; H is 
a 2~-periodic scalar function which can be computed using averaging 
techniq ues/2) Ck-  0k+l-Oh, where Oh is the phase of the kth oscillator. 

For such chains of oscillators, the behavior of the system depends on 
the symmetry properties of the function H. If H is an odd function of r 
phase-locked solutions to (2) are easy to find when they exist (Refs. 27 
and 28). (By "phase-locked" we mean here "1-1 phase-locked," i.e., all the 
oscillators run at the same frequency, with phase differences independent of 
time). If, in addition, Ak=-A (a linear frequency gradient), then for any 
fixed A and N large enough, there are no phase-locked solutions; the total 
frequency difference from one end of the chain to the other that can be sus- 
tained without losing locking is O(1/N). If H also has an even component, 
this changes dramatically. (26'29) In this case, the phase-locked solutions are 
no longer easy to find, and will be discussed further in Section 3. For some 
examples of a physical interpretation of the symmetry or lack of it in H, see 
Ref. 29. 

If {Ak} is too large to allow phase-locking, the solutions to (2) may 
still maintain local coherence. In Ref. 27, eqs. (2) are investigated for 
H =  sin ~, A = A(N) just large enough to prevent locking. It is shown that 
there are "frequency plateaus," or stretches of oscillators, for which the fre- 
quency is constant, with a break at which the frequency changes. This is 
the analogue, for N oscillators, of the "drift" between two oscillators of suf- 
ficiently different frequencies. (3"4) Such plateaus are seen numerically for 
equations involving coupled van der Pol oscillators in the sinusoidal 
regime/3~ See Ref. 27 for related references; these studies were all 
motivated by observed frequency plateaus in peristaltic movement. (311 
Another paper which examines phase-locking in chains of coupled 
oscillators is Ref. 32. 

Phase-locking has also been investigated for large collections of 
oscillators coupled more globally, e.g., to all other oscillators. Neu (Ref. 33) 
used phase methods, plus integrodifferential equations, to study how iden- 
tical oscillators with varied initial conditions reach synchrony. 
Ermentrout, (34) studied oscillators with random frequencies, coupled 
sinusoidally (H=  sin ~), and found limits on the variation of the natural 
frequencies in order for synchronization to occur. Winfree (Refs. 35 and 36, 
Chaps. 4 and 8, respectively) has done many computer simulations of 
collections of coupled oscillators and seen that, for some kinds of 
oscillators and coupling, synchronization does not occur, and the oscillator 
phases are widely dispersed. This might be expected for, e.g., a population 
of identical oscillators with coupling by a coupling function H for which 
H'(0)< 0, since the synchronous solution is unstable. (This can be seen 
from the linearization of the mean-field analogue of Ref. 2). Traub (371 has 
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examined collections of oscillators randomly coupled to understand the 
synchronization of neurons that occurs in epilepsy. (See also Refs. 38 
and 39.) 

Finally, we mention work on coupled circle maps and coupled logistic 
maps. (4~ We note that a system of two coupled oscillators described by 
O.D.E.s is reducible, via a Poincar6 map, to a single circle map. However, 
larger collections of such oscillators do not (by standard means) reduce to 
lower-dimensional collections of coupled maps. 

3. PHONY C O N T I N U U M  EQUATIONS A N D  
ENTROPY C O N D I T I O N S  

The phase-locked solutions to the equations for a chain of weakly 
coupled oscillators correspond to the critical points of (2). Unless H is an 
odd function of ~b there is no explicit way to compute these critical points, 
or even to determine, for given H and frequency differences z/k, whether 
there are any. However, if the number of oscillators is large, it can be 
rigorously shown, (26) under a certain hypothesis that there is an 
asymptotically stable time-independent solution to eqs.(2) and (3) 
provided there is an asymptotically stable time-independent solution to a 
continuum problem of the form 

(~ = fl(x) + 2f(~b)x + (l/N) g(~b)x x (4) 

f = g  at x = 0 ;  f = - g  at x = l  (5) 

Here 0~<x~<l, x,,~k/(N+ l), ~k~qJ[k/(N+ l)], and NZlk=flk'~ 
fl[k/(N+ 1)]. If H + = H -  as in (2), then f and g are the even and odd 
parts of H (so H = f + g ) ;  if G + r  , the functions f and g are com- 
putable from H +, H -  in a somewhat more complicated way. The time- 
independent solutions to the discrete problem eqs. (2), (3) converge as 
N ~  ~ to the corresponding solution to eqs. (4) and (5). 

When N is large, the time-independent version of eqs. (4) and (5) con- 
stitutes a singularly perturbed two-point boundary value problem (42) that 
can be solved uniquely (for a stable solution to eq. (4)), under a very 
general hypotheses, provided that S~ fl(x) dx is not too large. (26) In general, 
there is a shock layer whose size is O(1/N). The extra hypothesis men- 
tioned above, needed to ensure that the solutions to the discrete problem 
approximates that of the continuous one, is that g' > If 'l  along the relevant 
solution to (4), (5). This can be thought of as a stability criterion for 
algorithms that diseretize (4); it says that the shock layer of (4), whose size 
is governed by g'((J)/Nf'(r near the layer, is "large enough" relative to the 
mesh size 1IN. It is also closely related to entropy conditions for numerical 
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algorithms for solving u, = F(u)x that ensure convergence (as the mesh size 
decreases) to the right weak solutions. (43'44) Osher (45) has written on dis- 
cretizations of singularity perturbed boundary value problems; his work, 
aimed at solving the continuum problem, uses one-sided discretization 
schemes. It can be shown that the O.D.E. (2) can be written as a central 
differencing scheme for (4), to which Ref. 45 does not apply. 

Under the conditions g'(q~)>{f'(~b)] eq. (2) turns out to be a 
monotone scheme. Maximal principle ideas are then relevant. (See Ref. 46 
for use of the maximal principle in connection with singularity perturbed 
problems.) These can be adapted to show the local asymptotic stability of 
the solutions to (2), (3); they are not easily used to prove the existence of 
time-independent solutions because it is unclear how to construct upper 
and lower solutions until real solutions have been constructed. 

4. REAL C O N T I N U U M  EQUATIONS 

The continuum limit (4), (5) does not correspond to a physical con- 
tinuum; it is only a "diagnostic equation" for (2), (3). However, the 
mathematics is related to mathematics describing real continua, in par- 
ticular, reaction-diffusion equations (47~ 

ut=f(u,x)+DAZu, u ~ R  n, xe:R k (6) 

If the space coordinate is one-dimensional, and the reaction dynamics 

u, = f (u,  x) (7) 

has a stable limit cycle solution for each x, then the standard discretization 
of (6) is a chain of oscillators coupled to its nearest neighbors. As the mesh 
size decreases, however, the coupling between adjacent elements grows in 
strength without bound. This is not true of the equations described earlier, 
in which adjacent oscillators remain weakly coupled for all N; thus the 
scaling of the equation as N ~ oo is different. 

If the frequency variation (as x is changed) is not too great, trajec- 
tories can be expected to say, for each x, near the limit cycle of (7). In this 
case, phase methods are useful for describing the interactions of the com- 
plicated wave patterns that form. (42-5~ For a class of simple kinetic 
equations, this can be done rigorously(Sl-53~; for a much larger class of 
equations, it can be done formally through reduction of the equations to 
phase equations related to Burger's equation. (s3 s6) 

Burger's equation predicts phase-locking no matter how large the fre- 
quency spread; however, for a large frequency difference, the formal 
derivation can no longer be expected to be valid and phase-locking does, 
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indeed, break down, by mechanisms that involve changes of amplitude. 
Similarly, for patterns such as spirals (48'57-59) in which the phase is not well- 
defined at each point, phase methods are helpful but not completely suf- 
ficient. For some reaction equations having relaxation oscillations, an 
elegant analysis of spiral waves has been by Keener (to appear) using an 
Eikonal equation for the wave front. 

5. BIOLOGICAL P H E N O M E N A  

Many of the papers mentioned above were motivated by or related to 
biological problems involving oscillators. (For a large bibliography, as of 
1980, see Ref. 36.) Equations describing propagation of action potentials 
down a nerve axon (6~ are closely related to reaction-diffusion equations. 
Problems involving cardiac dynamics involve both forced systems/17'22) and 
sheets of electrically excitable tissue; the recent work of Keener on spiral 
waves is relevant to the latter. Large collections of oscillators with phases 
spatially distributed are important in systems of smooth muscle, including 
the intestine, ~3~ stomach, ureter, and small arteries. Such collections of 
oscillators are also implicated in Central Pattern Generators (CPGs), the 
autonomous programs in the central nervous system which govern 
sterotypic rhythmic motions such as walking, running, chewing, and 
breathing. (62-63) Much of the work described in the abstract was motivated 
by these two classes of systems, in particular by peristalitic motions in the 
intestine and fish locomotion. (64) For further mathematical problems and 
references involving CPGs, see Ref. 14. 
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This talk surveyed the application of renormalization group methods to the 
analysis of iteration of smooth circle mappings with critical points, starting 
with special rotation numbers like the golden ratio and extending to 
general rotation numbers. A detailed text for a closely related talk will 
appear in the proceedings of the conference: Statistical Mechanics and 
Field Theory: Mathematical Aspects, held in Groningen in August of 1985, 
to be published in Springer Lecture Notes in Physics. 
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The derivation of laws describing the observed behavior of macroscopic 
systems from the fundamental ("true") laws governing the dynamics of 
electrons, nuclei, atoms, etc., multitudes of which make up every piece of 
macroscopic matter, is the central objective (holy grail) of statistical 
mechanics. This goal has been achieved, to a remarkable degree, for 
equilibrium systems. Macroscopic properties are identified with the 
"almost sure" values of appropriate observables (functions of the 
microscopic state of the system) with respect to known probability 
measures (functions of the system's Hamiltonian). This requires, of course, 
some kind of thermodynamic, infinite volume limit in which the distinction 
between microscopic and macroscopic becomes precise. 

The situation is far less satisfactory at present for the more complex 
phenomena encountered in nonequilibrium systems, e.g., those described 
by the Boltzmann and/or the Navier-Stokes equations. While even the 
conceptual problems involved in such a derivation (time-reversible 
microscopic laws leading to time-irreversible macroscopic equations) are 
not entirely resolved the principal problems are (I believe) technical. Useful 
progress can therefore be made by considering model systems with 
stochastic microscopic dynamics, e.g., particles on a lattice evolving 
according to some Glauber and/or Kawasaki dynamics or interacting 
Ornstein Uhlenbeck particles in the continuum. Some of these models have 
the additional interest of approximately describing other phenomena, e.g., 
biological or social, in which the individual entities are themselves 
macroscopic. 

The current status of this program is the main topic of this session. I 
also discuss what these systems can teach us about the behavior of real 
systems, both microscopic and macroscopic. 
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We present a brief review on some selected topics of the dynamics of large- 
scale atmospheric flows. A general introduction to the field may be found 
in Pedlosky, (48) Gill, (18) and Hoskins and Pearce. ~25) 

P R E D I C T A B I L I T Y  

As any chaotic flow, the atmospheric circulation possesses a sensivity 
to the initial conditions which limit in practice our ability to predict its 
future evolution. This concept is central in weather forecasting and has 
appeared very early in meteorology. Thompson (59~ was the first to discuss 
the impact of the error-doubling time of the forecasts on the design of the 
operational network. Lorenz, (39) in a pioneering work, showed that a sim- 
ple deterministic system of three ordinary differential equations was suf- 
ficient to produce an unpredictable behavior. 

The amplification of noise by the dynamics was further studied from 
the statistical standpoint. (35'36"4~ The initial error concentrated with the 
small scales was shown to propagate and to invade progressively the whole 
spectrum. The growth rate was found exponential in two-dimensional tur- 
bulence but leads to a finite time of predictability in the three-dimensional 
case. This latter result was put in relation with the conjectured lost of 
analycity of Navier-Stokes equations at a finite time in the limit of large 
Reynolds number. (53) More recently, Frisch ~16) discussed the intermittency 
and the singularities of Navier-Stokes equations in terms of singularities in 
the complex space-time domain. 

Extensions of the statistical approach were performed by several 
authors to investigate the effect of wave propagation (3"a2) or 
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stratification, (63) The predictability of large-scale structures in decaying tur- 
bulence was discussed by Metais, Chollet, and Lesieur. (47) 

In parallel, direct evaluations of the atmospheric predicability from 
general circulation models were obtained by Smagorinsky (56) and 
Lorenz. 142) All estimates indicate that the upper limit of significant weather 
forecasting using the present observational network is between 10 and 
15 days. 

However, the quality of the forecast depends strongly on the season 
and the geographical location. (19~ It also depends on the average flow 
configuration. (65) In simple models, (33) the deterministic predictability 
varies from one art of the attractor to the other, in relation with the flow 
regime. The predictability of the forecast errors is a challenge for 
operational weather centers. The prediction of the error covariance is in 
principle a by-product of the Kalman filters discussed for data assimilation 
by Cohn, Ghil, and Isaacson. (8) Stochastic-dynamic methods ~14'6~ or 
Monte-Carlo methods (21) have also been proposed together with purely 
deterministic variational approaches. (32'38) 

Finally, extended range predictability beyond the deterministic limit 
appears possible on a statistical basis for transitions between weather 
regimes (see Sect. 3), or when the boundary conditions--sea surface tem- 
perature, soil moisture, snow cover,...--are varying over a long time scale 
and induce climatic drifts. 

Numerous other references on atmospheric predictability are collected 
in two volumes. (17'23) 

I N V A R I A N T  S L O W  M A N I F O L D S  

The eigenmodes of the atmospheric flow split into two families, the 
gravity modes and the Rossby modes. These latter are due to the variation 
of the Coriolis force with latitude. Within the scales of most common 
meteorological perturbations, around 1000 km, the associated time scales 
separate clearly: a few hours for the gravity modes and several days for the 
Rossby modes. It results from observations that the atmospheric data, for 
instance the surface pressure, do not show any significant oscillations 
peaking within the range of gravity frequencies. This is also true for the 
regime state of a realistic general circulation model. However, when raw 
observations are used to initialize this GCM, large amplitude gravity 
oscillations generally develop as transients which persist over a few days. 

It is thus widely admitted that in operational forecasting models the 
filtering of gravity waves must be a part of the data assimilation process. 
The first investigtors have soon recognized that it is not sufficient to project 
the initial data onto the subspace of Rossby modes to get rid of the 
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transient oscillations. Indeed, they develop rapidly in this case through 
nonlinear interactions. In the nonlinear normal mode initialization, ~43/the 
difficulty is cured through an approximate cancellation of the first time 
derivatives of the fast modes. This algorithm, presently implanted in most 
operational numerical models, leads to a significant improvement over the 
first days of the forecast. ~58) However, no superiority is observed with 
respect to a noninitialized model after four days. 

The generalization to higher-order derivatives was first performed by 
Baer and Tribbia t2) and subsequently formalized by Leith ~37) and 
Lorenz. ~41) They introduced the idea that the dynamics of the large-scale 
real atmosphere is entirely contained in a manifold of its phase space which 
has the dimension of the Rossby modes subspace. On this manifold, the 
gravity modes are slaved to the Rossby modes, so that all observed quan- 
tities vary slowly with time. Starting from any initial state, its projection 
onto the slow manifold is computed through an iterative expansion 
obtained by successive approximate cancellations of the nth order time 
derivatives of the linear gravity modes. When applied to simplified 
atmospheric models (Tribbia, 1979; Ballish, 1981), the second-order 
algorithm leads to a significant improvement of the filtering of transient 
gravity modes with respect to Machenhauer's method. Lorenz ~41) applied a 
high-order algorithm to a nine-components primitive equation model and 
was able to reconstruct the observed attractor up to a precision of five 
digits: 

There is obviously some mathematical interest in the possible existence 
of an invariant attracting manifold in the atmospheric equations. There is 
also a need for clarification since very few rigorous results have been 
established so far. We raise here a few of questions which may be addressed 
within this topic. 

Within small scales, gravity wave activity, in particular associated with 
orography and convection, cannot be neglected in the atmosphere 
although it mainly escapes the standard observational network. This is 
especially true at tropical latitudes. There is clear evidence that this 
activity is not completely slaved to the large-scale circulation but 
depends also on small-scale fluctuations. Thus invariant manifolds 
may only exist for a set of atmospheric equations where these 
processes are parameterized and not explicitly represented. 

The existence of an attracting invariant manifold is only proved in 
some cases for simplified atmospheric models. 129) There are numerical 
evidences ~13'64) that gravity waves are commonly generated by inter- 
mittent transfers from the Rossby modes. Their apparent nature, slave 
or free, is strongly dependent on the damping factor. 
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The concept of slowness is not well-defined. Generally, the high-order 
time derivatives of a function are not algebraically bounded. Then the 
series used in initialization are asymptotic and not convergent. When 
local invariant manifolds exist, analytic expansions are possible. (64) 
However, these expansions become also asymptotic when the 
manifolds are not analytic. 

MULTIPLE REGIMES 

A noticeable part of the atmospheric variability of mid-latitude lies in 
the time scale domain from 10 days to a few months, (15) well beyond the 
average life span of cyclones of three to five days. This variability is mainly 
quasi-stationary and concentrated at a few preferred geographical 
locations. (5) Its statistical distribution of life span is exponential in 
character. (10) 

Among persistent anomalies, the blocking pattern, as documented by 
Rex, (52) consists in the appearance of a quai-stationary center of high 
pressure, located at about 50~ in certain preferred areas, off the western 
margins of the continents. This blocking high may persist for longer than 
10 days. It deflects the traveling cyclones from the usual storm tracks and 
produces a strong southward advection of polar air on its eastern flank, 
inducing severe cold episodes in winter. The occurrence or the non- 
occurrence of this feature determines to a large extent the distinctive 
character of an individual season; it is therefore of great importance to 
weekly and monthly mean weather prediction. 

Egger (m was the first to suggest that the internal atmospheric 
variability, modeled by nonlinear wave-wave interactions, could account 
for the finite amplitude and duration of blocking events. Charney and 
DeVote (6~ took the more general view that blocking and near zonal flow 
could be associated with two distinct stable stationary solutions of a highly 
simplified atmospheric model. 

Although being still controversial, the existence of multiple regimes in 
mid-latitude circulation is substantiated by the observation of bimodality 
in the atmospheric data. ~4'~~176 Here the main difficulties lie in the absence 
of sharp separation between regimes and the shortness of available data 
series. 

Multiple regimes have so far been mainly investigated in simple but 
progressively refined models. In one-layer models, the main ingredient is 
the coupling between waves and mean flow by an orographic form-drag. 
Introducing sphericity ~28) and more degrees of freedom, ~33) quite realistic 
patterns obtain. The impact of the truncation on the bifurcation diagram is 
discussed by Yoden. C66~ The deformation of linear resonances is discussed 
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by Malguzzi and Speranza (45) and by Benzi etal. (4) Pierrehumbert and 
Malguzzi (5~ show that the existence of finite amplitude local solutions of 
the Euler equations, like the Batchelor's dipole, may explain multiple flow 
regimes without need of resonance. Local stratified solutions are also 
obtained by Malguzzi and Manalotte-Rizzoli (46) as eigenmodes of a 
Schr6dinger equation. Tung and Rosenthal (62) discuss the physical range of 
validity for barotropic models. Indeed, correct energetics obtains only when 
one consider stratified models. (7'51) In particular, Itoh ~27) shows that 
realistic exchanges are only observed after the first chaotic transition, and 
Legras and Vautard (s4) extend the approach to the maintenance of large- 
scale stationary regimes by small-scale free transients. 

In these studies, multiple flow regimes are obtained as stationary 
stable solutions or as pieces of more complex attractors. The relevant 
characteristic is then the concentration of measure in several subdomains of 
the phase space, each of which corresponding to a separate large-scale pat- 
tern. Unstable stationary solutions are often landmarks of persistent flow 
regimes in the attractor. No detailed knowledge of the attractor is needed 
except possibly in the connecting area between two pieces. Transitions 
between regimes or breaks are induced preferentially by small-scale 
activity, ~12'51) their statistical distribution bearing similarities with a 
Markov process. (33) The exit time from a given flow regime characterizes its 
regime predictability which must be distinguished from the more familiar 
concept of pointwise-predictability (Sect. 1). This latter depends on the 
detailed dynamics and may be different from one flow regime to the other. 

M A I N T E N A N C E  OF LARGE-SCALE S T R U C T U R E S  BY 
SMALL-SCALE T R A N S I E N T S  

The idea that large-scale structures may be maintained by small-scale 
transients dates back to the concept of negative eddy viscosity discussed by 
Start. (57) In the classical phenomenology of two-dimensional turbulence, (3~ 
the energy is cascaded backward to the large scales when the enstrophy 
(the square of the vorticity) is cascaded to the small scale and dissipated. 
Numerical simulation (3'44) and experimental results (9) show that long-live 
localized eddies tend to be produced by this process. Inside these eddies the 
vorticity is strongly correlated with the streamfunction, inhibiting the non- 
linear interactions. 

In the atmosphere, the transients act on the average to dissipate the 
stationary waves. (31) However, observations indicate that they play a 
crucial role in the maintenance of the blocking pattern. ~25'26) Theoretical 
studies show that at least three mechanisms are candidates for this effect. 
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1. The straining of barotropic disturbances propagating on a diffluent jet 
may enhance local nonlinear transfers and reinforce the splitting of the 
basic flow. (54) 

2. At mature development stage, baroclinic disturbances are able to 
induce southward potential vorticity fluxes. (55) This may account for 
the location of blocking highs at the end of the storm tracks and the 
multiplicity of the regimes owing to the existence of a feedback loop 
between large-scale circulation and small-scale stresses. (34) 

3. Similar effect is obtained in a pure linear framework when local 
baroclinic instabilities are considered for a basic flow with variable 
shear. (49) 

Detailed investigation and comparaison of these mechanisms has still 
to be performed in realistic atmospheric models. There is, however, no 
doubt that the study of the coherent forcing due to the small scales is a key 
problem in the attempt to produce climatic forecasts. 
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A Rayle igh-Benard  experiment in mercury/1'2) where a natural  frequency 
(the oscillatory instability) is forced with a second frequency (3) (elec- 
t romagnet ic  excitation) is experimentally studied. (References 1 and 2 
correspond to the Rayle igh-Bernard  theory. Reference 2 is very physical.) 
The mot ion  is on a 2-torus in phase space, with orbits either locked on a 
periodic trajectory or  on a quasi-periodic one on the torus. Fo r  quasi- 
periodic states of  fixed winding number  the transit ion to chaos, as the non-  
linearities are increased, has a defined scaling (4'5'6) (which give the scaling 
laws for a fixed winding number) .  We have measured the 6 value for two 

irrational winding numbers  ( x / - 5 - 1 ) / 2  and x / 2 - 1 .  The locked states 
define a fractal region (7'8) with a dimension D =0.865,  which has been 
measured. (These references relate more  to the locked states and their 
fractal dimensions.) 
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Boolean delay equations (BDEs) are evolution equations for a vector of dis- 
cretely valued components x(t). The value of each component depends on 
previous values of components x j ( t - t i j )  according to the equations 

x i ( t )  = Z [ x l ( t -  tix),..., x , ( t -  tio)] 

where the f i  are appropriate functions. 
The existence, uniqueness, and continuous dependence of solutions 

both on initial data (x(t) given on [0, 1]) and on parameters (t,j) allow the 
study of the piecewise constant initial data problem as a dynamical system, 
i.e., a homeomorphism Tf: X ~ X on a certain metric space X. This point of 
view is articulated in Ref. 1, where the initial data problem is formulated as 
a dynamical system. In order to obtain existence of piecewise constant 
solutions the authors introduce an upper bound on the asymptotic growth 
of a phase function, which can be taken as a measure of the complexity of a 
solution, and exhibit numerical evidence of a system with increasing com- 
plexity. In Ghil and Mullhaupt, ~3) and in Mullhaupt, ~4) these results are 
refined and complemented by lower bounds, some of which are sharp. 
Previous to Dee and Ghil, ~2) other investigators considered equations 
related to BDEs or ultimately shown to be specializations of BDEs. 
Perhaps the most important of these are the algebraic and statistical work 
on shift register sequences (see the monograph of Golomb ~5) for a good 
survey) and the dynamical studies of Thomas on kinetic logic (see the 
collection Thomas~)). 

The subject of this lecture is the consideration of periodic and 
aperiodic solutions of BDEs and the consequences for the application of 
BDEs to modeling. Relevant are the results that (1) systems with rationally 
dependent delays have eventually periodic solutions (2)systems with 
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a r b i t r a r y  de lays  can  h a v e  a p e r i o d i c  so lu t ions  wi th  c o m p l e x i t y  d e p e n d e n t  

u p o n  the  r e s o n a n c e  r e l a t ions  sat isf ied by  the  de lays ;  a n d  ( 3 ) s y s t e m s  are  

s t ruc tu ra l l y  s tab le  if  a n d  o n l y  if all  so lu t i ons  h a v e  t r ans i en t s  a n d  pe r i ods  

tha t  a re  u n i f o r m l y  b o u n d e d  and  r e s o n a n c e  is n o t  of  l ow  order .  

A c o n c r e t e  e x a m p l e  of  a p p l y i n g  B D E s  to  c l ima t e  is t a k e n  f r o m  Ghi l ,  

M u l l h a u p t ,  a n d  Pes t i aux .  (6) T w o  sys tems  of  B D E s  are  g iven  which  m o d e l  

the  effect of  abyssa l  c i r c u l a t i o n  d u r i n g  ice ages. T h e  d y n a m i c  b e h a v i o r  is 

i nves t iga t ed  us ing  m e t h o d s  o f  G h i l  a n d  M u l l h a u p t  (3) a n d  q u a l i t a t i v e  

a g r e e m e n t  is o b t a i n e d  for  one  o f  the  two  c o m p e t i n g  sys tems  wi th  

p a l e o c l i m a t i c  da ta .  

A N N O T A T E D  B I B L I O G R A P H Y  

A. Pr incipal  Re ferences  

1. R. Thomas, Kinetic Logic, Lecture Notes in Biomathematics 29 (1979). There are several 
papers by Thomas in this volume on kinetic logic and its application, and two papers by 
Van Ham. These can be regarded as the immediate progenitors of the study of Boolean 
delay equations. 

2. D. Dee and M. Ghil, "Boolean Difference Equations I: Formulation and Dynamic 
Behavior," SIAM J. Appl. Math. 43:1019 (1983). This paper initiates the study of BDEs 
qua dynamical systems and studies a system with solutions of increasing complexity. 

3. M. Ghil and A. Mullhaupt, "Boolean Delay Equations II: Periodic and Aperiodic 
Solutions," J. Stat. Phys. 41 (to appear). This surveys what is known about BDEs. It con- 
tains several classifications of BDEs, and estimates for period length, complexity, effect of 
resonance, etc. as well as a characterization of structural stability. This paper introduces the 
concept of asymptotic simplification and gives an algebraic method for studying this 
phenomenon. 

4. A. Mullhaupt, Boolean Delay Equations: A Class of Semi-Discrete Dynamical Systems, 
Ph.D. dissertation, New York University (1984). This contains some results in common 
with Ghil and Mullhaupt, (3) with detailed proofs. In addition, two appendices are given, 
one explaining various numerical algorithms for computing BDEs and their relative merits, 
the other a survey of diophantine approximation, which considers the question of resonan- 
ces for BDEs. 

5. S. Golomb, Shift-Register Sequences (Holden-Day, San Francisco, 1967). This volume 
studies linear scalar shift register sequences algebraically and statistically. Some numerical 
work on cycle length of nonlinear shift register sequences is given. 

6. M. Ghil, A. Mullhaupt, and P. Pestiaux, "Deep Water Formation and Quaternary 
Glaciations," unpublished preprint. This paper contains two models for the ice ages using 
BDEs. 

B. Related M a t e r i a l  

1. S. Wolfram, Rev. Mod. Phys. 55 (1983). This is a survey of cellular automata, a field closely 
related to BDEs, in which all delays are equal to each other. 

2. a. V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations 
(Springer-Verlag, New York, 1983). 
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2. b. J. Guckenheimer and P. Holmes, Nonlinear Oscillations and Dynamical Systems and 
Bifurcations of Vector Fields (Springer-Verlag, New York, 1983). Together, these two 
books provide an excellent survey of dynamical systems. The first book emphasizes 
theoretical aspects, the second emphasizes more concrete examples and applications. 

3. D. Knuth, The Art of Computer Programming, Vols. 1, 2, and 3, 2nd ed. (Addison Wesley, 
Reading, Massachussetts, 1971). The first and third volumes are relevant to the more 
straightforward numerical methods for BDEs. The second volume contains an excellent 
survey of shift register sequences as well as a very useful section on continued fractions. 

4. W. Schmidt, Diophantine Approximation (Springer-Verlag, New York, 1980). One of the 
most complete books on the theorems of diphantine approximation. 

5. G. H. Hardy, Ramanujan (Chelsea, New York, 1959). Chapter five of this book solves a 
problem of diophantine approximation that is closely related to the study of intermittency 
in BDEs. 1 

6. M. Ghil, in M. Ghil, R. Benzi, and G. Parisi, eds., Turbulence and Predictability in 
Geophysical Fluid Dynamics (North-Holland, Amsterdam, 1985). This article surveys the 
question of climate variability, in particular the quaternary glaciations from the point of 
view of experimental data (proxy records of temperature history), as well as theory 
(radiation-energy balance, coupling of the atmosphere-ocean-ice-crust mantle, and 
celestial mechanics). Limitations on the predictability and reconstruction of climate history 
are discussed. 

How many integers of the form 2m3 " are less than x? 

High-Resolution Schemes for Gas Dynamics 

Stanley J. Osher 
Department of Mathematics, University of California, Los Angeles, California 
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We construct nonoscillatory methods for approximating hyperbolic 
systems of conservation laws based on work in Refs. 1 and 2. These 
methods share many desirable properties with TVD-total variation 
diminishing schemes, but TVD schemes are at most first-order accurate at 
critical points of the solution. 

The schemes are first developed for scalar conservation laws but they 
have natural extensions to systems, including gas dynamics, via Riemann 
solvers-----either Godunov's method or one of several approximations. 

TVD schemes based on similar ideas have been very successful. They 
have resulted in state-of-the-art calculations for problems with strong 
shocks, and have been incorporated into production codes at NASA 
laboratories to calculate transonic and supersonic flows in aeronautics. 
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They are reliable enough so that new physics can sometimes be dis- 
covered. It was found numerically, using a TVD scheme, that the equation 
of magnetohydrodynamics do not have only genuinely nonlinear linearly 
degenerate fields as was generally believed. The analogue of a nonconvex 
field sometimes exists. This was then verified analytically. ~2s) 

The new schemes are always designed to have the following properties: 

( - 1) Consistency 

(0) Conservation form 

(1) Sharp monotone discrete shock profiles--no spurious overshoots 

(2) High-order accuracy in smooth regions of the flow right up to dis- 
continuities 

(3) No nonphysical limit solutions r condition 

(4) Rapid convergence to steady state, when appropriate. 

Conventional schemes such as Lax-Wendroffs have problems with (1) 
and also with (3), which can be fixed. Besides polluting the solution, the 
spurious wiggles can trigger nonlinear instabilities, e.g., negative densities. 

Condition (3) can be very important. A simple entropy fix of the Mur- 
man scheme used to solve the transonic small disturbance equation 
resulted in a much more robust algorithm. Implicit calculations could be 
performed with a factor of thirty greater time steps, for unsteady transonic 
flutter problems. NASA production codes have been changed 
accordingly.~15'16) 

We review the recent history of this subject and describe the new non- 
oscillatory and high-order accurate methods. 
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A D D E N D U M  

The References 1 and 2 concern the new numerical methods. References 3 14, 18-20, and 
25-27 concern TVD schemes at various stages of development, as well as practical 
calculations. References 15 and 16 use an entropy fix of Murman's scheme for transonic 
calculations first suggested in Ref. 17. References 21-24 concern the transonic full potential 
equation, and Ref. 28 concerns the MHD equations, including the new results mentioned 
above. 
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Intermittency in Turbulence 
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In fully developed turbulence one can measure the velocity gradient on a 
scale e: 6 : ( x )  =- v(x  + ~) - v(x). 

Experimentally it seems that ( ( 6 : ) " ~  ~ e  ~(n), 7(n) being a nontrivial 
function of n (it is hoped, but it is not evident, that 7(n) does not depend 
on the particular system but becomes a universal function of n in the zero 
viscosity limit). This phenomenon is called intermittency. 

It was suggested that this behavior is due to the existence of 
singularities with different strength, concentrated on sets having different 
measures, one embedded into the other. This model was further elaborated 
in Ref. 3. 

Intermittency is also a rather general phenomenon: it is present in the 
"response function" of a deterministic (or stochastic) dynamical system; 
this is the starting point for the definition of generalized Liapunov 
exponents. ~4'5) The density (measured with a resolution e of points of an 
inhomogeneous fractal) is also intermittent. ~3,6,7) 

Intermittency appears also in the statistical mechanics of random 
systems, where we have that, in the large x limit [ C ( x ) ] n ~ e x p [ - m ( n ) x ] ,  
C(3c) is the correlation function and the bar denotes the average over the 
randomness. (See Ref. 1 for a nice recent review.) 

REFERENCES 
1. U. Frisch, In Varenna Summer School (1984). 
2. U. Frisch and G. Parisi, In Varenna Summer School (1984). 
3. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J. Phys. A 14:3521 (1984). 
4. P. Grassberger and I. Procaccia, Physiea D 13 (1984). 
5. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, Rome Preprint N. 429 (1985). 
6. P. Grassberger, Phys. Lett. A 97:227 (1983). 
7. G. Paladin and A. Vulpiani, Lett. Nuovo Cim. 4:82 (1984). 
8. B. Derrida, Phys. Rep. 103:29 (1984). 

822/44/5-6-23 



1058 Pulvirenti 

The Boltzmann Grad Limit for Hard Spheres 
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A basic problem in the kinetic theory of gases is to prove the validity of the 
Boltzmann equation. As generally claimed in the textbooks, it is believed 
that a system of particles obeying the Newton laws approaches, in the 
Boltzmann-Grad limit, a stochastic and irreversible system, whose 
dynamics is governed by the Boltzmann equation. Nevertheless very few 
rigorous results are known. First, Gallavotti posed and solved the problem 
for a simplified model (the Lorentz model, for which the corresponding 
Boltzmann equation is linear). (1) For improvements and a general dis- 
cussion of this limit, see Ref. 2. See Ref. 3 for a stronger convergence and 
for a probabilistic approach. 

Lanford, in a well-known paper (4) investigated hard-sphere systems 
and proved the validity of the Boltzmann equations, but only for short 
times. Recently (5) the same result has been proved for a two-dimensional 
system of hard spheres, in case of small perturbations of the vacuum, for all 
times. My talk concerns these last two results. 

It has be mentioned that, in the Lanford's situation, even a global 
existence theorem is not known, while in our context (also in3D) a 
satisfactory existence theorem was already obtained. (6) 

For the status of the existence theorems the reader is referred to Ref. 7 
and references quoted therein. 

I conclude with a philosophical remark. A correct mathematical proof 
of the Boltzmann-Grad limit is not only a matter of elegance. There are 
situations, e.g., the four-velocities Brodwell model, in which the formal 
proof of the BG limit is simply wrong. (8) 
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In his fundamental work 
established the identity 

on physical Brownian motion, Einstein (1) 

D = 2kT.  m (1) 

between the diffusion constant of a Brownian particle and its mobility, 
which is defined as average velocity per unit force ( k T =  Boltzmann factor). 
It follows from the assumption that an additional force F adds a drift m" F 
to the Wiener process describing the particles motion, and that this 
modified process has as invariant measure dx . exp (F ,  x/kT).  

Here we examine some cases of diffusion like processes in R d, which 
arise as motion of a tagged particle in a system of interacting particles or in 
a (constant in time) random environment. All these cases have in common 
that there exists an invariance principle for the renormalized trajectory 
under consideration 

X~(t) := X(te-2),  t >~ 0 (2) 

tends weakly to WD, a Wiener process with diffusion matrix D. To identify 
D, one proceeds as follows: one imbeds the given dynamics, which is 
Markovian with reversible measure # on some state space, into a family 
[T,(b)],~> o, b e R  d, so that the measure # . exp(2b .  u), u: position of the 
tagged particle becomes reversible for [T,(b)] .  For  physical reasons it 
appears meaningful, when the rescaling is done, to replace b by eb. It turns 
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out  tha t  the law of X~(.)  under  [T , ( eb ) ] ,  in the l imit  e ~ O, is con t iguous  to 
the law of X , ( . )  under  [T , (O)] ,  the or iginal  dynamics ;  the l imit ing process  
is 

w o ( t )  + vt (3) 

with 

v = D .  b (4) 

In  this sense eqs. (3) and  (4) are the des i red  Einste in  relat ion.  (The 
"mobi l i ty"  in our  units is equal  to D, since in our  form of the invar ian t  
m e a s u r e / t ,  exp(2b-  u) the Bo l t zmann  factor  k T  has been set equal  to 1). 

F ina l ly  we examine  o ther  app roaches  to Einstein 's  re la t ion:  ident i t ies  
for the second m o m e n t s  of  X( t ) ,  t finite, and  an  a t t e mp t  to define mobi l i ty  
by the long- t ime behav io r  of  X under  [-Tt(b)],  with b fixed. 
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Physical and numerical experiments show that deterministic noise, or 
chaos, is ubiquitous. A good understanding of the onset of chaos has been 
achieved earlier using as a mathematical tool the geometric theory of dif- 
ferentiable dynamical systems. Moderately excited chaotic systems require 
new tools, which are provided by the ergodic theory of dynamical systems. 
This theory has reached a stage where fruitful contact and exchange with 
physical experiments has become widespread. The present review is an 
account of the main mathematical ideas and their concrete implementation 
in analyzing experiments. The main subjects are the theory of dimensions 
(number of excited degrees of freedom), entropy (production of infor- 
mation), and of characteristic exponents (describing sensitivity to initial 
conditions). The relations between these quantities, as well as their 
experimental determination, are discussed. 

The systematic investigation of these quantities provides us for the first 
time with a reasonable understanding of dynamical systems, excited well 
beyond the quasiperiodic regimes. This is another step toward 
understanding highly turbulent fluids. 

The above title and abstract are those of a review paper written jointly 
with J.-P. Eckmann to appear in Rev. Mod. Phys. 

We present, with some comments, a list of general references centered 
on the physical aspects of the ergodic theory of differentiable dynamical 
systems. These referencesinclude books, conference proceedings, and 
reviews. 
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Informal statement of theorem. 
the Navier-Stokes equations 

Let e > 0. There exists a solution to 

Z f,,.,, ~< o =o (B) 
i = l  i ~ l  

- - -  "Jex: ~ i  + ~ = 0  (A) 
~t j = l  i=1 

of v iscous  i ncompres s ib l e  flow in  th ree-space  wi th  an  ex te rna l  force f 

sat isfying the fo l lowing  
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The flow starts out (at time 0) being Coo with compact support and 
develops singularities (at time 1) on a set of Hausdorff dimension equal to 
1 - s. At these singularities the speed of the flow becomes infinite. 

If u: R 3 x (a, b) ~ R" is a function then F o r m a l  s t a t e m e n t  o f  t h e o r e m .  

we set 

O2u {eu, Ou ~u) 

i V u L 2 -  - 

T h e o r e m .  Let s > 0. There exist S c R 3 and functions 
R 3 x [0, o0) ~ R 3, p: R 3 x [0, c~) ~ R with the following properties: 

1. there is a compact set K ~ R  3 such that u(x, t ) = 0  for all xCK 
2. for fixed t, the function ut:R 3 --,R 3 defined by ut(x)=u(x, t) is Coo 

b/: 

3. ~ ff~x.(x, t )=0 
i = 1  

4. p(x,t)=fR 3 ~ ~ Ouj Oui ) 1 i=l j_l~xi(Y,t)--~xj(y, t l (4~lx-  yl dy 

5. there exists M <  oo such that LLu,[[2<~M for all t 

6. IVuL 2, lul 3 and lul Ipl are integrable, 

7. if g: R 3 x (0, oo) ~ R is a C ~ function with compact support and g >~ 0 
then 

3 IVul2 g ~  3(2-11u[2+p)u.Vg+ 32 11u12 + A g  

8. if x e S and U is a neighborhood of (x, 1), then u is not essentially 
bounded on U 

9. S is a compact set with Hausdorff dimension equal to 1 - s 

In Ref. 3 I showed that eqs. (3), (4) and (7) imply a weak form of eqs. 
(A) and (B). Reference 3 is a preliminary version of the theorem with S = a 
set with only one point. Reference 4 extends this to S - - a  Cantor  set of 
positive Hausdorff dimension. References I and 2 show that the Hausdorff 
dimension of S cannot be more than 1. 
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Over recent years there has been an attempt to understand the validity of 
the hydrodynamic description of microscopic models with many particles. 
The goal is to show that in a certain scaling limit--the hydrodynamic 
limit--the appropriate hydrodynamic equations become exact. The 
hydrodynamic limit is distinguished from all other limits by the fact that 
only space and time are scaled: on the microscale where individual particles 
and their motion are resolved, the interaction among particles is 
unchanged. 

1. CLASSICAL PARTICLES 

On the Euler scale the hydrodynamic limit for one-dimensional hard 
rods is proved in Ref. 1. Convergence of the average density fields is shown, 
no law of large numbers and no local equilibrium. For  the same system the 
hydrodynamic limit on Euler and Navier-Stokes time scale is proved for 
the fluctuation fields in equilibrium in Ref. 2. Only the covariance is 
studied. The central limit theorem on the Euler scale, and its 
Navier-Stokes corrections, are investigated in Ref. 3. 

2. CLASSICAL LATTICE S Y S T E M S  

On the Euler scale the hydrodynamic limit for a system of harmonic 
oscillators is proved in Ref. 4. They show the law of large numbers, but no 
local equilibrium. 
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3. Q U A N T U M  SYSTEMS 

The Euler equations are proved for the one-dimensional XY model 
and quantum hard rods (see Refs. 5 and 6). No local equilibrium is shown. 
On the macroscopic scale the quantum character is lost in the limit. 

4. CLASSICAL PARTICLES, STOCHASTIC D Y N A M I C S  

In these models good ergodic properties are built into the dynamics. 
One wants to understand how the system manages to maintain local 
equilibrium. Another aspect is an understanding of the qualitative behavior 
of the time correlations on large space-time scales--the standard problem 
of equilibrium statistical mechanics. 

The hydrodynamic limit on the Navier-Stokes time scale is proved for 
simple symmetric exclusion in Refo 7, for independent particles in Ref. 8, for 
diffusing hard rods in Ref. 9, and for the zero range process with rate 
g(k)--1 in Ref. 10. 

In the latter two models a nonlinear diffusion equation is obtained. 
There is recent progress in deriving the nonlinear diffusion equation 
without exploiting very specific properties of the model (as in the above 
cases). Reference 11 deals with the Ginzburg-Landau model with conser- 
vation law (model B) at sufficiently weak interaction and Ref. 12 with the 
zero range process with an approximately linear rate g(k). In both cases 
the law of large numbers and local equilibrium are established. The 
Ginzburg-Landau model without noise (zero temperature) are studied in 
Refs. 13 and 14. 

Steady states for simple exclusion are discussed in Ref. 7, Ref. 15, and 
in Ref. 16 for zero range. 

The hydrodynamic limit on the Euler scale for asymmetric simple 
exclusion is proved in Refs. 17-19, establising local equilibrium. Asym- 
metric zero range with g(k)= 1 is studied in Ref. 20. Its behavior at a 
shock is investigated in Ref. 21. 

A branching process from a hydrodynamic point of view is discussed 
in Ref. 22. Fluctuation fields are expected to converge to an infinite-dimen- 
sional Ornstein-Uhlenbeck process (c.f., e.g., Ref. 23). This has been 
proved in equilibrium for general, reversible zero-range processes by Brox 
and Rost (Ref. 24) for lattice gases (reversible exclusion processes with 
speed change) satisfying the gradient condition at high temperatures 
(Ref. 25) for interacting Brownian particles at high temperatures in Ref. 26; 
c.f. also Refs. 27 and 28. For Ginzburg-Landau models with conservation 
law at high temperatures in Ref. 29. 

Fluctuations around time-dependent solutions are studied for the zero 
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range process in Ref. 9. Related are small deviations from local equilibrium 
(Refs. 30 and 31). 

Long-range static correlations are a different mechanism leading to 
hydrodynamic behavior. For the voter model this is studied in Refs. 32-37. 
Reference 36 is for Ginzburg-Landau models of anharmonic lattices in 
Ref. 37. 

Equilibrium fluctuations of interacting Brownian particles with long- 
range forces still behave differently. A model case is studied in Ref. 38. 

Two survey articles are highly recommended: Refs. 39 and 40. 
I apologize for any papers overlooked. It should be mentioned that for 

the motion of a test (tagged) particle of an interacting particle system the 
hydrodynamic limit corresponds to the central limit theorem (invariance 
principle), scaled in such a way that the microscopic interactions remain 
unchanged. This is by itself a large subject, and I list only a few recent 
papers which may serve as a starting point (Refs. 4145). 
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